几种数据库连接池性能比较 hikari druid c3p0 dbcp jdbc

背景

对现有的数据库连接池做调研对比,综合性能,可靠性,稳定性,扩展性等因素选出推荐出最优的数据库连接池 。     

NOTE: 本文所有测试均是MySQL

测试结论

   1:性能方面 hikariCP>druid>tomcat-jdbc>dbcp>c3p0 。hikariCP的高性能得益于最大限度的避免锁竞争。

   2:druid功能最为全面,sql拦截等功能,统计数据较为全面,具有良好的扩展性。

   3:综合性能,扩展性等方面,可考虑使用druid或者hikariCP连接池。

   4:可开启prepareStatement缓存,对性能会有大概20%的提升。

功能对比

功能dbcpdruidc3p0tomcat-jdbcHikariCP
是否支持PSCache
监控jmxjmx/log/httpjmx,logjmxjmx
扩展性
sql拦截及解析支持
代码简单中等复杂简单简单
更新时间2015.8.62015.10.10 2015.12.09 2015.12.3
特点依赖于common-pool阿里开源,功能全面历史久远,代码逻辑复杂,且不易维护 优化力度大,功能简单,起源于boneCP
连接池管理LinkedBlockingDeque数组 FairBlockingQueuethreadlocal+CopyOnWriteArrayList
  •  由于boneCP被hikariCP替代,并且已经不再更新,boneCP没有进行调研。
  • proxool网上有评测说在并发较高的情况下会出错,proxool便没有进行调研。
  •  druid的功能比较全面,且扩展性较好,比较方便对jdbc接口进行监控跟踪等。
  • c3p0历史悠久,代码及其复杂,不利于维护。并且存在deadlock的潜在风险。

性能测试

环境配置:

CPUIntel(R) Xeon(R) CPU E5-2430 v2 @ 2.50GHz,24core
msyql version5.5.46
tomcat-jdbc version8.0.28
HikariCP version2.4.3
c3p0 Version0.9.5-pre8
dbcpVersion2.0.1
druidVersion1.0.5

 

1:获取关闭连接性能测试

       测试说明:

  • 初始连接和最小连接均为5,最大连接为20。在borrow和return均不心跳检测
  • 其中打开关闭次数为: 100w次
  • 测试用例和mysql在同一台机器上面,尽量避免io的影响
  • 使用mock和连接mysql在不同线程并发下的响应时间

     图形:

 

 

   mock性能数据 (单位:ms)

 52050100
tomcat-jdbc4424471,0131,264
c3p04,4805,5277,44910,725
dbcp6766898671,292
hikari38333830
druid291293562985

MySQL性能数据 (单位:ms)

 52050100
tomcat-jdbc4364531,0331,291
c3p04,3785,7267,97510,948
dbcp6716798971,380
hikari96828778
druid3044246901,130

测试结果:

  • mock和mysql连接性能表现差不多,主要是由于初始化的时候建立了连接后期不再建立连接,和使用mock连接逻辑一致。 
  • 性能表现:hikariCP>druid>tomcat-jdbc>dbcp>c3p0。
  •  hikariCP 的性能及其优异。hikariCP号称java平台最快的数据库连接池。
  •  hikariCP在并发较高的情况下,性能基本上没有下降。
  •  c3p0连接池的性能很差,不建议使用该数据库连接池。
     

   hikariCP性能分析:

  • hikariCP通过优化(concurrentBag,fastStatementList )集合来提高并发的读写效率。
  • hikariCP使用threadlocal缓存连接及大量使用CAS的机制,最大限度的避免lock。单可能带来cpu使用率的上升。
  • 从字节码的维度优化代码。 (default inline threshold for a JVM running the server Hotspot compiler is 35 bytecodes )让方法尽量在35个字节码一下,来提升jvm的处理效率。

 

2:查询一条语句性能测试

     测试说明:

  • 初始连接和最小连接均为8,最大连接为8。在borrow和return均不心跳检测
  • 查询的次数为10w次,查询的语句为 1:打开连接 2:执行 :select 1 3:关闭连接
  • 测试用例和mysql在同一台机器上面,尽量避免io的影响

图形:

   

 测试数据:

 582050100
tomcat-jdbc2,1781,4951,7691,8181,858
c3p03,2373,4514,4885,9947,906
dbcp2,8161,9352,0972,2432,280
hikari2,2991,5461,6821,7511,772
druid2,2971,5511,8001,9772,032

 

测试结果:

  •   在并发比较少的情况下,每个连接池的响应时间差不多。是由于并发少,基本上没有资源竞争。
  •   在并发较高的情况下,随着并发的升高,hikariCP响应时间基本上没有变动。
  •   c3p0随着并发的提高,性能急剧下降。

 

3:pscache性能对比

   测试说明:

  • 通过druid进行设置pscache和不设置pscache的性能对比
  • 初始连接和最小连接均为8,最大连接为8。在borrow和return均不心跳检测。并且执行的并发数为8.
  • 查询10w次。查询流程为:1:建立连接,2:循环查询preparestatement语句 3:close连接
  • 测试用例和mysql在同一台机器上面,尽量避免io的影响

   测试数据:

cache1,927
not cache2,134

  测试结果:

  • 开启psCache缓存,性能大概有20%幅度的提升。可考虑开启pscache.

  测试说明:

  • psCache是connection私有的,所以不存在线程竞争的问题,开启pscache不会存在竞争的性能损耗。
  • psCache的key为prepare执行的sql和catalog等,value对应的为prepareStatement对象。开启缓存主要是减少了解析sql的开销。

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 创作都市 设计师:CSDN官方博客 返回首页